

RISE OF NATION ACADEMY
"We create the impeccable creature"

Guess Paper
 Standard - XII
 Subject -Mathematics

Date $-30 / 08 / 2019$	Time - $\mathbf{0 1}: 30 \mathrm{hrs}$.
Max. Marks - $\mathbf{4 0}$	Min. Marks - 20

Q. 1 The volume of a sphere is increasing at the rate of $3 \mathrm{~cm}^{3} / \mathrm{s}$. Find the rate of increase of its surface area, when the radius is 2 cm .
Q. 2 A swimming pool is to be drained for cleaning. If L represents the number of liters of water in the pool t second after the pool has been plugged of to drain and $L=$ $200(10-t)^{2}$. How fast is the water running out at the end of 5 s and what is the average rate at which the water flows out during the first 5 s ?
(OR)
Q. 3 A kite is moving horizontally at a height of 151.5 m . if the speed of kite is $10 \mathrm{~m} / \mathrm{s}$, then how fast is the string being let out, when the kite is $\mathbf{2 5 0} \mathbf{~ m}$ away from the boy who is flying the kite, if the height of boy is 1.5 m .?
Q. 4 Find the intervals in which the function f given by $f(x)=4 x^{3}-6 x^{2}-72 x+30$ is strictly increasing and strictly decreasing. Also, check on whole real line.
Q. 5 Which of the following function is decreasing on $\left(0, \frac{\pi}{2}\right)$?
(1) $\sin 2 x$
(2) $\boldsymbol{\operatorname { t a n }} \mathrm{x}$
(3) $\cos x$
(4) $\cos 3 x$
Q. 6 Show that $f(x)=x^{2}$ is strictly decreasing in $(-\infty, 0)$.
Q. 7 Show that the function $f(x)=\tan x-x$ is always increasing $x \in R$.
Q. 8 Find the intervals in which the function f given by $f(x)=-2 x^{3}-9 x^{2}-12 x+1$ is strictly increasing or strictly decreasing.
(OR)
(4)

chase	

Q. 9 Find the intervals in which $f(x)=\sin 3 x-\cos 3 x, 0<x<\pi$, is strictly increasing or strictly decreasing.
Q. 10 Find the points on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangent are - (i) Parallel to \mathbf{X} - axis,
(ii) Parallel to Y - axis. (2) (OR)
Q. 11 Find the slop of the normal to the curve $x \operatorname{acos}^{3} \theta$ and $y=\operatorname{asin}^{3} \theta$ at $\theta=\frac{\pi}{4}$.(3)
Q. 12 If the curve $a y+x^{2}=7$ and $x^{3}=y$, cut orthogonally at $(1,1)$, then the value of a is? (1)
Q. 13 Prove that the curve $x=y^{2}$ and $x y=k$ cuts at right angles, if $8 k^{2}=1$. (OR)
Q. 14 Find the equation of the tangent to the curve $y=x^{3}+2 x+6$, which is
(i) parallel to the line $2 x-y+9=0$. (ii) perpendicular to the line $5 y-15 x=13$.
Q. 15 Prove that the curves $y^{2}=4 x$ and $x^{2}+y^{2}-6 x+1=0$ touch each other at the point (1, 2) (3)
(OR)
Q. 16 Show that the condition that the curves $a x^{2}+b y^{2}=1$ and $a_{1} x^{2}+b_{1} y^{2}=1$ should intersect orthogonally is that $\frac{1}{a}-\frac{1}{b}=\frac{1}{a_{1}}-\frac{1}{b_{1}}$.
Q. 17 A circular metal plate expands under heating, so that its radius increases by $\mathbf{2 \%}$. Find the approximate increase in the area of the place, if the radius of the plate before heating is 10 cm . (2)
Q. 18 If $f(x)=3 x^{2}+15 x+5$, then find the approximate value of $f(3.02)$ using differentials.
Q. 19 All the closed right circular cylindrical cans of volume $128 \pi \mathrm{~cm}^{3}$, find the dimensions of the can which has minimum surface area.
Q. 20 Show that the semi - vertical angle of the cone of the maximum volume and of given slant height is $\cos ^{-1} \frac{1}{\sqrt{3}}$.

Q. 21 Show that the height of the cylinder of greatest volume which can be inscribed in a circular cone of height h and having semi - vertical angle α is one - third that of the cone and the greatest volume of cylindrical is $\frac{4}{27} \pi h^{3} \tan ^{2} \alpha$. (OR)
(4)
Q. 22 Show that the right circular cone of least curved surface area and given volume has an altitude equal to $\sqrt{2}$ times the radius of the base.

